Preparation and Dielectric Properties of SiC/LSR Nanocomposites for Insulation of High Voltage Direct Current Cable Accessories
نویسندگان
چکیده
The conductivity mismatch in the composite insulation of high voltage direct current (HVDC) cable accessories causes electric field distribution distortion and even insulation breakdown. Therefore, a liquid silicone rubber (LSR) filled with SiC nanoparticles is prepared for the insulation of cable accessories. The micro-morphology of the SiC/LSR nanocomposites is observed by scanning electron microscopy, and their trap parameters are characterized using thermal stimulated current (TSC) tests. Moreover, the dielectric properties of SiC/LSR nanocomposites with different SiC concentrations are tested. The results show that the 3 wt % SiC/LSR sample has the best nonlinear conductivity, more than one order of magnitude higher than that of pure LSR with improved temperature and nonlinear conductivity coefficients. The relative permittivity increased 0.2 and dielectric loss factor increased 0.003, while its breakdown strength decreased 5 kV/mm compared to those of pure LSR. Moreover, the TSC results indicate the introduction of SiC nanoparticles reduced the trap level and trap density. Furthermore, the SiC nanoparticles filling significantly increased the sensitivity of LSR to electric field stress and temperature changes, enhancing the conductivity and electric field distribution within the HVDC cable accessories, thus improving the reliability of the HVDC cable accessories.
منابع مشابه
The effect of composition and processing on electric characteristics of XLPE for use in HVDC cable applications
Polyethylene exhibits many key characteristics including low dielectric loss, high breakdown strength and good processability. Most modern extruded high voltage cables employ cross-linked polyethylene (XLPE) as the insulation material. The main advantage of XLPE is its excellent thermo-mechanical properties; it is relatively cheap and has low dielectric loss and low conductivity making it an id...
متن کاملEffect of nanofillers on the dielectric properties of epoxy nanocomposites
Epoxy resin is widely used in high voltage apparatus as insulation. Fillers are often added to epoxy resin to enhance its mechanical, thermal and chemical properties. The addition of fillers can deteriorate electrical performance. With the new development in nanotechnology, it has been widely anticipated that the combination of nanoparticles with traditional resin systems may create nanocomposi...
متن کاملExperience with dielectric response measurements on oil-paper insulated cables
Deterioration of the underground power cables insulation has been established to be caused by electrical, thermal and environmental stresses. With the degradation of dielectric strength of the insulation, the underground cables will not be able to function optimally or as planned. As a supplement to the existing dissipation factor and other conventional cable diagnostic measurements, the Decay ...
متن کاملCable Diagnostics with On-voltage Time Domain Reflectometry
In this paper a diagnostics technique is presented for localization of degraded regions along an XLPE insulated power cable. The diagnostics would help to develop a strategy for condition based maintenance of old XLPE power cables. A design of the diagnostics system and results of measurements performed on two power cables are presented. The measurements data is processed in order to localize t...
متن کاملSpace Charge Accumulation under the Effects of Temperature Gradient on Solid Dielectric Dc Cable
It is well known that existence and accumulation of space charge within the insulating material poses threat to the reliability in the operation of dc power cables. When the cables are loaded under high voltage direct current (HVDC), temperature gradient is developed across the insulation material. In this paper, commercial ac XLPE power cables were used under an application voltage of 80 kV dc...
متن کامل